(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

a(x1) → x1
a(b(x1)) → b(c(x1))
c(c(x1)) → b(a(c(a(a(x1)))))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(z0) → z0
a(b(z0)) → b(c(z0))
c(c(z0)) → b(a(c(a(a(z0)))))
Tuples:

A(b(z0)) → c2(C(z0))
C(c(z0)) → c3(A(c(a(a(z0)))), C(a(a(z0))), A(a(z0)), A(z0))
S tuples:

A(b(z0)) → c2(C(z0))
C(c(z0)) → c3(A(c(a(a(z0)))), C(a(a(z0))), A(a(z0)), A(z0))
K tuples:none
Defined Rule Symbols:

a, c

Defined Pair Symbols:

A, C

Compound Symbols:

c2, c3

(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace C(c(z0)) → c3(A(c(a(a(z0)))), C(a(a(z0))), A(a(z0)), A(z0)) by

C(c(x0)) → c3(A(c(a(x0))), C(a(a(x0))), A(a(x0)), A(x0))
C(c(b(z0))) → c3(A(c(a(b(c(z0))))), C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(z0) → z0
a(b(z0)) → b(c(z0))
c(c(z0)) → b(a(c(a(a(z0)))))
Tuples:

A(b(z0)) → c2(C(z0))
C(c(x0)) → c3(A(c(a(x0))), C(a(a(x0))), A(a(x0)), A(x0))
C(c(b(z0))) → c3(A(c(a(b(c(z0))))), C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
S tuples:

A(b(z0)) → c2(C(z0))
C(c(x0)) → c3(A(c(a(x0))), C(a(a(x0))), A(a(x0)), A(x0))
C(c(b(z0))) → c3(A(c(a(b(c(z0))))), C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
K tuples:none
Defined Rule Symbols:

a, c

Defined Pair Symbols:

A, C

Compound Symbols:

c2, c3

(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace C(c(x0)) → c3(A(c(a(x0))), C(a(a(x0))), A(a(x0)), A(x0)) by

C(c(z0)) → c3(A(c(z0)), C(a(a(z0))), A(a(z0)), A(z0))
C(c(b(z0))) → c3(A(c(b(c(z0)))), C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
C(c(x0)) → c3(C(a(a(x0))))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(z0) → z0
a(b(z0)) → b(c(z0))
c(c(z0)) → b(a(c(a(a(z0)))))
Tuples:

A(b(z0)) → c2(C(z0))
C(c(b(z0))) → c3(A(c(a(b(c(z0))))), C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
C(c(z0)) → c3(A(c(z0)), C(a(a(z0))), A(a(z0)), A(z0))
C(c(b(z0))) → c3(A(c(b(c(z0)))), C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
C(c(x0)) → c3(C(a(a(x0))))
S tuples:

A(b(z0)) → c2(C(z0))
C(c(b(z0))) → c3(A(c(a(b(c(z0))))), C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
C(c(z0)) → c3(A(c(z0)), C(a(a(z0))), A(a(z0)), A(z0))
C(c(b(z0))) → c3(A(c(b(c(z0)))), C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
C(c(x0)) → c3(C(a(a(x0))))
K tuples:none
Defined Rule Symbols:

a, c

Defined Pair Symbols:

A, C

Compound Symbols:

c2, c3, c3

(7) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(z0) → z0
a(b(z0)) → b(c(z0))
c(c(z0)) → b(a(c(a(a(z0)))))
Tuples:

A(b(z0)) → c2(C(z0))
C(c(b(z0))) → c3(A(c(a(b(c(z0))))), C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
C(c(x0)) → c3(C(a(a(x0))))
C(c(z0)) → c3(C(a(a(z0))), A(a(z0)), A(z0))
C(c(b(z0))) → c3(C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
S tuples:

A(b(z0)) → c2(C(z0))
C(c(b(z0))) → c3(A(c(a(b(c(z0))))), C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
C(c(x0)) → c3(C(a(a(x0))))
C(c(z0)) → c3(C(a(a(z0))), A(a(z0)), A(z0))
C(c(b(z0))) → c3(C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
K tuples:none
Defined Rule Symbols:

a, c

Defined Pair Symbols:

A, C

Compound Symbols:

c2, c3, c3, c3

(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace C(c(b(z0))) → c3(A(c(a(b(c(z0))))), C(a(a(b(z0)))), A(a(b(z0))), A(b(z0))) by

C(c(b(x0))) → c3(A(c(b(c(x0)))), C(a(a(b(x0)))), A(a(b(x0))), A(b(x0)))
C(c(b(x0))) → c3(A(c(b(c(c(x0))))), C(a(a(b(x0)))), A(a(b(x0))), A(b(x0)))
C(c(b(c(z0)))) → c3(A(c(a(b(b(a(c(a(a(z0))))))))), C(a(a(b(c(z0))))), A(a(b(c(z0)))), A(b(c(z0))))
C(c(b(x0))) → c3(C(a(a(b(x0)))), A(a(b(x0))), A(b(x0)))

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(z0) → z0
a(b(z0)) → b(c(z0))
c(c(z0)) → b(a(c(a(a(z0)))))
Tuples:

A(b(z0)) → c2(C(z0))
C(c(x0)) → c3(C(a(a(x0))))
C(c(z0)) → c3(C(a(a(z0))), A(a(z0)), A(z0))
C(c(b(z0))) → c3(C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
C(c(b(x0))) → c3(A(c(b(c(x0)))), C(a(a(b(x0)))), A(a(b(x0))), A(b(x0)))
C(c(b(x0))) → c3(A(c(b(c(c(x0))))), C(a(a(b(x0)))), A(a(b(x0))), A(b(x0)))
C(c(b(c(z0)))) → c3(A(c(a(b(b(a(c(a(a(z0))))))))), C(a(a(b(c(z0))))), A(a(b(c(z0)))), A(b(c(z0))))
S tuples:

A(b(z0)) → c2(C(z0))
C(c(x0)) → c3(C(a(a(x0))))
C(c(z0)) → c3(C(a(a(z0))), A(a(z0)), A(z0))
C(c(b(z0))) → c3(C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
C(c(b(x0))) → c3(A(c(b(c(x0)))), C(a(a(b(x0)))), A(a(b(x0))), A(b(x0)))
C(c(b(x0))) → c3(A(c(b(c(c(x0))))), C(a(a(b(x0)))), A(a(b(x0))), A(b(x0)))
C(c(b(c(z0)))) → c3(A(c(a(b(b(a(c(a(a(z0))))))))), C(a(a(b(c(z0))))), A(a(b(c(z0)))), A(b(c(z0))))
K tuples:none
Defined Rule Symbols:

a, c

Defined Pair Symbols:

A, C

Compound Symbols:

c2, c3, c3, c3

(11) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(z0) → z0
a(b(z0)) → b(c(z0))
c(c(z0)) → b(a(c(a(a(z0)))))
Tuples:

A(b(z0)) → c2(C(z0))
C(c(x0)) → c3(C(a(a(x0))))
C(c(z0)) → c3(C(a(a(z0))), A(a(z0)), A(z0))
C(c(b(z0))) → c3(C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
C(c(b(c(z0)))) → c3(A(c(a(b(b(a(c(a(a(z0))))))))), C(a(a(b(c(z0))))), A(a(b(c(z0)))), A(b(c(z0))))
S tuples:

A(b(z0)) → c2(C(z0))
C(c(x0)) → c3(C(a(a(x0))))
C(c(z0)) → c3(C(a(a(z0))), A(a(z0)), A(z0))
C(c(b(z0))) → c3(C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
C(c(b(c(z0)))) → c3(A(c(a(b(b(a(c(a(a(z0))))))))), C(a(a(b(c(z0))))), A(a(b(c(z0)))), A(b(c(z0))))
K tuples:none
Defined Rule Symbols:

a, c

Defined Pair Symbols:

A, C

Compound Symbols:

c2, c3, c3, c3

(13) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use forward instantiation to replace A(b(z0)) → c2(C(z0)) by

A(b(c(y0))) → c2(C(c(y0)))
A(b(c(b(y0)))) → c2(C(c(b(y0))))
A(b(c(b(c(y0))))) → c2(C(c(b(c(y0)))))

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(z0) → z0
a(b(z0)) → b(c(z0))
c(c(z0)) → b(a(c(a(a(z0)))))
Tuples:

C(c(x0)) → c3(C(a(a(x0))))
C(c(z0)) → c3(C(a(a(z0))), A(a(z0)), A(z0))
C(c(b(z0))) → c3(C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
C(c(b(c(z0)))) → c3(A(c(a(b(b(a(c(a(a(z0))))))))), C(a(a(b(c(z0))))), A(a(b(c(z0)))), A(b(c(z0))))
A(b(c(y0))) → c2(C(c(y0)))
A(b(c(b(y0)))) → c2(C(c(b(y0))))
A(b(c(b(c(y0))))) → c2(C(c(b(c(y0)))))
S tuples:

C(c(x0)) → c3(C(a(a(x0))))
C(c(z0)) → c3(C(a(a(z0))), A(a(z0)), A(z0))
C(c(b(z0))) → c3(C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
C(c(b(c(z0)))) → c3(A(c(a(b(b(a(c(a(a(z0))))))))), C(a(a(b(c(z0))))), A(a(b(c(z0)))), A(b(c(z0))))
A(b(c(y0))) → c2(C(c(y0)))
A(b(c(b(y0)))) → c2(C(c(b(y0))))
A(b(c(b(c(y0))))) → c2(C(c(b(c(y0)))))
K tuples:none
Defined Rule Symbols:

a, c

Defined Pair Symbols:

C, A

Compound Symbols:

c3, c3, c3, c2

(15) CdtUnreachableProof (EQUIVALENT transformation)

The following tuples could be removed as they are not reachable from basic start terms:

C(c(x0)) → c3(C(a(a(x0))))
C(c(z0)) → c3(C(a(a(z0))), A(a(z0)), A(z0))
C(c(b(z0))) → c3(C(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
C(c(b(c(z0)))) → c3(A(c(a(b(b(a(c(a(a(z0))))))))), C(a(a(b(c(z0))))), A(a(b(c(z0)))), A(b(c(z0))))
A(b(c(y0))) → c2(C(c(y0)))
A(b(c(b(y0)))) → c2(C(c(b(y0))))
A(b(c(b(c(y0))))) → c2(C(c(b(c(y0)))))

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

a(z0) → z0
a(b(z0)) → b(c(z0))
c(c(z0)) → b(a(c(a(a(z0)))))
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

a, c

Defined Pair Symbols:none

Compound Symbols:none

(17) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(18) BOUNDS(O(1), O(1))